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Correlation-hole method for the spectra of superconducting microwave billiards
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The spectral fluctuation properties of various two- and three-dimensional superconducting billiard systems
are investigated by employing the correlation-hole method. It rests on the sensitivity of the spectral Fourier
transform to long-range correlations and is thus an alternative technique to study chaotic dynamics. First, we
apply the method to the eigenfrequencies that are extracted from the measured resonances. Second, we analyze
the unfolded raw spectra, including the shape of the resonances. The merit of the method lies in a clear
separation of the statistics due to the positions and due to the shape of the resonances. However, we show that
statistical fluctuations of the intensities of the resonances have a strong impact on the observable. Therefore,
the visibility of the correlation hole is studied as a function of the number of independent statistical variables
entering into the intensities. The visibility improves if independent spectra are superimposed.
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PACS number~s!: 05.45.1b, 03.65.Ge, 41.20.Jb
m
U
ar
rta
e,
y
ro
um
i
lly
th
d

in
e
ll
e

ia
i

i-
ow
ly
iff
th
a
o
th

n
hb

the
so-
ner-
aw
ved
his
it
ea-
are

by
r-
the
rre-
d to
s a
the
en-
ne,

too

the
ity
he

rates
the
nd
m
the
the
a-

e.,

the
hyl-n
I. INTRODUCTION

In recent years, the experimental study of chaotic dyna
ics in billiard systems has attracted considerable interest.
like nuclei, atoms, molecules, or solid-state probes, billi
systems can be specifically designed to investigate ce
aspects of chaotic dynamics. This ‘‘toy model’’ featur
which the aforementioned systems lack, makes billiard s
tems very useful for studies of chaotic dynamics. Elect
magnetic billiards simulating the corresponding quant
systems were experimentally investigated for the first time
Refs.@1–3#. The use of superconducting instead of norma
conducting billiards yields an immense improvement in
quality of the measured spectra. Results were presente
Ref. @4#.

The fluctuation properties of a rich variety of systems
nuclear, atomic, molecular, and solid-state physics have b
studied experimentally and theoretically. In the case of fu
developed chaos, they are found to be universal and v
accurately described by random matrix theory@5–10#. Due
to general symmetry constraints, a time-reversal invar
system with conserved or broken rotational invariance
modeled by the Gaussian orthogonal ensemble~GOE! or the
Gaussian symplectic ensemble~GSE!, while the Gaussian
unitary ensemble~GUE! describes time-reversal noninvar
ant systems@6#. Regular systems, on the other hand, sh
significantly different fluctuation properties. Remarkab
they are, unlike the chaotic ones, not generic and can d
from system to system. Although one often encounters
complete lack of any correlations, which is referred to
Poisson regularity, the extreme opposite, i.e., the totally c
related spectrum of the harmonic oscillator, also falls into
regular class.

In order to study the fluctuation properties on short a
long scales, one commonly analyzes the nearest-neig

*Present address: Siemens AG, Bereich Medizinische Tech
D-91052 Erlangen, Germany.
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spacing distribution and the spectral rigidity@7,10#. This re-
quires one to extract the positions of the levels from
measured spectrum. Thus the analysis is done on the
called stick spectrum, i.e., the sequence of those eigene
gies or eigenfrequencies that could be identified in the r
spectra. However, one often has to deal with poorly resol
spectra, which prevents some levels from being found. T
‘‘missing level effect’’ has a considerable impact since
counterfeits correlations that do not exist. Fluctuation m
sures that are less sensitive to the missing level effect
therefore highly desirable.

In molecular physics, such a technique was developed
Leviandieret al. @11# for the analysis of the long-range co
relations. The properly smoothed Fourier transform of
spectral autocorrelation function maps the long-range co
lations onto short scales in Fourier space. As compare
fluctuations of regular systems, chaotic dynamics cause
considerable suppression of this Fourier transform near
origin, a so-called correlation hole. This has been experim
tally observed in spectra of the molecules acetyle
methylglyoxal, and nitrogendioxyd@11,12#. Recently it was
shown that nuclear spectra exhibit the correlation hole,
@11,13#.

As pointed out already, fluctuation measures such as
nearest-neighbor spacing distribution or the spectral rigid
can only be used for the extracted stick spectrum. T
correlation-hole method of Ref.@11#, however, is also appli-
cable to the raw spectra since the Fourier transform sepa
the statistics of the positions of the eigenenergies from
statistics of the intensities and widths. A possibly faulty a
incomplete extraction of the positions and the widths fro
the spectra can thus be avoided. Consequently,
correlation-hole method is, in principle, less sensitive to
missing level effect and it is worthwhile to study its applic
bility to other physical systems.

The theory of the correlation hole for realistic spectra, i.
including the linewidths, was worked out in Ref.@14# in the
framework of a scattering model. In the same picture,
correlation hole observed by laser spectroscopy in met
glyoxal @11# was numerically simulated in Ref.@15#. A sum-
ik,
6674 © 1997 The American Physical Society
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FIG. 1. Geometries of the superconducting resonators that were used in the experiments. Note that all systems are desymm
avoid parity mixing. In comparison with the full systems, this yields a quarter stadium, an eighth of a hyperbola, and a 48th of a 3
billiard, respectively. In the case of the latter, the sides of the drawn cube are 170 mm long and the radius of the removed sphere
half of this length, i.e., 85 mm.
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mary and a qualitative discussion of the Fourier transform
statistical spectra can be found in Ref.@16#. A conspicuous
short version of the theory of the correlation hole is p
sented in Appendix A of Ref.@17#. In Ref. @18#, the correla-
tion hole is related to its classical analog, the survival pr
ability. The correlation-hole method was applied to billia
spectra by Kudrolliet al. @19#. However, these authors stud
ied only the extracted stick spectra.

In the present work, we apply this method to the ri
variety of billiard spectra that we have measured in rec
years. We have two goals. First, we want to verify the s
nificance of the correlation hole for billiards of quite diffe
ent geometries by analyzing the stick spectra of the extra
levels. Second, we use the correlation-hole technique for
unfolded raw spectra and discuss the merits and the prob
of such an analysis. We present a method of superimpo
several raw spectra in order to improve upon the visibility
the correlation hole. The excellent resolution of the spec
measured in superconducting microwave cavities makes
recent data the ideal object for such an analysis.

After a short description of the experiment in Sec. II, w
present the theoretical concepts in Sec. III. We perform
analysis of our data in Sec. IV and finish with conclusions
Sec. V.

II. EXPERIMENT

Due to the equivalence of the stationary Schro¨dinger
equation for quantum systems to the corresponding He
holtz equation for electromagnetic resonators in two dim
sions, it is possible to simulate a quantum billiard of a giv
shape with the help of a sufficiently flat macroscopic el
tromagnetic resonator of the same shape@1–3#. We have
experimentally studied several two- and three-dimensio
~3D! billiard systems using superconducting microwa
resonators made of niobium. Figure 1 shows some of
investigated cavities as well as their dimensions. Early
periments using superconducting instead of normally c
ducting resonators were performed in a desymmetrized B
movich stadium billiard and a truncated hyperbola billia
@4,20,21# using the 2-K cryostats of a superconducting el
tron linear accelerator described by Auerhammeret al. @22#.
Recently, a desymmetrized 3D Sinai billiard@23,24# was ex-
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perimentally investigated in a different and very stable 4-
bath cryostat. Note that the electromagnetic Helmholtz eq
tion is vectorial in three dimensions and cannot be reduced
an effective scalar equation. Thus it is structurally differe
from the scalar Schro¨dinger equation. It is of considerable
interest that the statistical concepts developed in the the
of quantum chaos and random matrices are also applicabl
arbitrary classical electromagnetic wave phenomena. C
ceptually, this is similar to the study of spectral fluctuation
of elastomechanical eigenmodes in aluminum@25,26# and
quartz @27# blocks, which are also described very well b
random matrix theory.

All resonators mentioned above were excited in the fr
quency range between 0 and 20 GHz using capacitively c
pling dipole antennas sitting in small holes on the niobiu
surface. Using one antenna for the excitation of the resona
and either another or the same one for the detection of
microwave signal, we were able to measure the transmiss
or the reflection spectrum of the resonator, respectively,
employing a Hewlett Packard HP8510B vector network an
lyzer. As an example, Fig. 2 shows a typical transmissi
spectrum of the 3D Sinai billiard in the range between 6.
and 6.75 GHz. The signal is given as the ratio of outp
power to input power on a logarithmic scale. The measur

FIG. 2. Transmission spectrum of the 3D Sinai billiard in th
range between 6.50 and 6.75 GHz. The signal is given as the r
of output power to input power on a logarithmic scale. The dash
vertical lines mark the extracted eigenfrequenciesf m as used in the
stick spectrum.
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resonances have quality factors of up toQ'107 and signal-
to-noise ratios of up toS/N'70 dB, which makes it easy to
separate the resonances from each other and from the b
ground. As a consequence, all the important characteris
such as eigenfrequencies and widths can be extracted w
very high accuracy@21,28,29#. A detailed analysis of the
original spectra yields a total number of approximately 10
resonances for the 2D billiards~hyperbola and stadium! and
nearly 1900 resonances for the 3D Sinai billiard. These
genvalue sequences form the basis of the present test o
correlation-hole method.

III. THEORETICAL CONCEPTS OF THE
CORRELATION-HOLE METHOD

We summarize, for the convenience of the reader,
basic ideas in Sec. III A and some earlier results on the t
level form factors in Sec. III B. We discuss the theoretic
results on the correlation hole for stick and raw spectra
Secs. III C and III D, respectively.

A. Basic ideas

Consider a spectrumI (E) or I ( f ) measured as a functio
of energyE or, in our case, frequencyf . This spectrum is
described as a finite superposition of isolated or interfer
resonances of a given universal shapeL( f ) with statistically
distributed positions, intensities, and widths. Although t
shape is often known to be a Lorentzian@28,29#, we keep the
discussion general. In order to analyze the true fluctuatio
one removes secular variations of the level density, i.e.,
Weyl- or Thomas-Fermi contribution@30–32#. To this end,
one introduces@7# the smooth partNWeyl( f ) of the integrated
level density as the new coordinate by settingx5NWeyl( f )
for our experimental and theoretical discussions. Since
wish to study generic fluctuations, we shall henceforth
sume that this unfolding procedure has been performed
write I5I (x). This implies that, in the variablex, the mean
level spacing is unity everywhere.

Hence we study a spectrum ofN levels xm ,
m51, . . . ,N, on this unfolded scale. In the following, th
level numberN is always assumed to be large. To simpli
the theoretical description, we make the further assump
that the line shapeL(x) does not depend on the intensiti
ym for a given resonancem in the expression

I ~x!5 (
m51

N

ym L~x2xm!, ~1!

where the line shape is normalized to unity. The observa
of interest is the decay function, i.e., the modulus square
the Fourier transform of the spectrum

uC~ t !u25U E
2`

1`

dxI~x!exp~2p ixt !U2. ~2!

The Fourier coordinatet defines an unfolded time. This ex
pression can be rewritten as the Fourier transform

uC~ t !u25E
2`

1`

dvA~v!exp~2p ivt ! ~3!
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of the autocorrelation function

A~v!5E
2`

1`

dVI ~V2v/2!I ~V1v/2!. ~4!

At this point a comment on the assumed independence o
line shapeL(x) of the intensitiesym is in order. From scat-
tering theory@33# it is known that this is the case only if th
numberL of open decay channels is very large. Stric
speaking, this is not true for the experiments to be analy
here. The decay channels are the antennas that coupl
cavity to the external world and henceL5224; see the
discussion below. However, the assumption of independe
is to some extent justified here since it affects only the lo
time behavior of the decay functionuC(t)u2, whereas the
correlation hole is a feature found in the short-time behav
Moreover, the more general theory also shows that the
glect of interference effects as done in Eq.~1! is justified.
Thus, it turns out that our simplification still yields a sati
factory description of the correlation hole in all cases
studied.

Replacing the energy average in Eq.~4! by the average
over an ensemble of resonances, one can make use of
results of random matrix theory@5,6,21#: ~i! theym are inde-
pendent of thexm and~ii ! for mÞn the intensitiesym ,yn are
independent of each other. The function~4! then can be cas
into the form

A~v!5Ny2E
2`

1`

dx8L~V2v/22x8!L~V1v/22x8!

1N ȳ22N ȳ2E
2`

1`

dx8E
2`

1`

dx9L~V2v/22x8!

3L~V1v/22x9!Y2~x92x8!. ~5!

HereY2(x) denotes the Dyson-Mehta two-level cluster fun
tion @6#. It describes the two-point correlations; more pr
cisely, @12Y2(x)#dx is the probability to find two reso-
nances separated by the distancex on the unfolded scale
Thus, for large argumentsx, the correlations have to disap
pear andY2(x) approaches zero. Note thatȳ

2, the square of
the first moment of the intensities, andy2, the second mo-
ment, appear in Eq.~5!.

We introduce the Fourier transform of the two-level clu
ter function,

b2~ t !5E
2`

1`

dxY2~x!exp~2p ixt !, ~6!

and analogously the Fourier transformL̃ (t) of the line shape
L(x). The functionb2(t) is referred to as the two-level form
factor @6#. Just like the two-level cluster function, it has
vanish for large argumentst. Since the last term on the right
hand side of Eq.~5! contains a convolution, we can make u
of the convolution theorem to evaluate the Fourier transfo
of A(v). Collecting everything, one finds@11,14,16,17# for
non-negative times

uC~ t !u25Ny2d~ t !1Ny2u L̃ ~ t !u2@12ab2~ t !#, ~7!
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where we denote the ratio of the statistical moments by

a5 ȳ 2/y2. ~8!

The correlation hole is described by the functi

@12ab2(t)#, while u L̃ (t)u2 describes the decay of the res
nances. Thus the statistics of the positions is separated
the statistics of the intensities. Thed function in Eq. ~7!
occurs since we assumedN to be very large. For a finite
number of levels, this contribution will acquire a width a
discussed in detail in Refs.@14,17#. Due to the high numbe
of levels in our data, we disregard this contribution in t
following.

If the resonances are well isolated, thenu L̃ (t)u2 varies
much more slowly thanb2(t). In the extreme case of van
ishing widths, i.e.,L(x)5d(x), the function~7! approaches
Ny2 for large timest. For the more realistic Lorentzian lin
shape@28,29# one hasL̃(t)5exp(2pGt), whereG is the total
width, implying that the function~7! decays exponentially.

B. Correlation hole and two-level form factors

For the convenience of the reader, we collect here
well-known results for the form factorsb2(t) introduced in
Eq. ~6!. The case that the positionsxm ,xn of any two differ-
ent resonancesmÞn are completely uncorrelated is referre
to as Poisson regularity@6,7#. Obviously, the two-level clus-
ter function must be zero everywhere,Y2

Poisson(x)50, and
therefore also b2

Poisson(t)50, which results in uC(t)u2

'Ny25const even for small values oft. There is no corre-
lation hole.

In the case of fully developed chaos, the statistics of
positions is described by the Gaussian ensembles@6#. The
general symmetry constraints imply that a time-reversal
variant system with conserved or broken rotational inva
ance is modeled by the Gaussian orthogonal or the symp
tic ensemble, while the Gaussian unitary ensemble descr
time-reversal noninvariant systems. We summarize the
sults for the form factors@6#. The situation most commonly
encountered is described by the GOE, yielding

b2
GOE~ t !5H 122t1t ln~112t !, 0,t<1

211t ln@~2t11!/~2t21!#, t.1.
~9!

This function is displayed in Fig. 3. It corresponds to a dec
function ~7! for a51, which has been normalized byNy2.
The GSE form factor is given by

b2
GSE~ t !5H 12t/41~ t lnu12tu!/4, 0,t<2

0, t.2
~10!

and thus exhibits a divergence att51. Importantly, for all
fully chaotic cases, we have for vanishing timesb2(0)51.
Thus, according to Eq.~7!, the deepest point of the correla
tion hole is reached for small values of the timet and has the
value uC(t)u2'Ny2(12a).

C. Stick spectra

Suppose that all resonances have a vanishing width,
we consider a sequence of levels at positionsxm represented
m

e

e

-
-
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es
e-

y

e.,

by d functions. If, moreover, all of them have the same
tensity,ym5 ȳ , Eq. ~1! reduces to

I ~x!5 ȳ (
m51

N

d~x2xm!, ~11!

which is nothing but the spectral function. It serves as
mathematical definition of the term ‘‘stick spectrum’’@12#.
Formally, the probability distribution of the intensityym is
given by ad distribution, which impliesy25 ȳ 2; hence, ac-
cording to the definition~8!, we find a51. Consequently,
the functionuC(t)u2 of Eq. ~7! becomes

uC~ t !u25N ȳ2@d~ t !112b2~ t !#. ~12!

This is the case of maximum visibility of the correlatio
hole. For a realistic distributionp(y) of the intensities, we
will always find values ofa that are smaller, often consid
erably smaller, than unity.

D. Correlation hole for raw spectra

The typical raw spectra of our resonators can be descr
as a superposition of isolated Lorentzian resonances@28,29#
with statistically distributed locations, intensities, an
widths. This closely parallels the situation of isolated res
nances in a compound nucleus scattering experiment@33#.
Due to a minimized surface resistance in the supercond
ing billiards, the total width is basically composed of a su
over partial widths that describe the power dissipation i
the L decay channels realized by the antennas. Thus e
total width is given by

Gm5 (
c51

L

Gmc ~13!

for every resonance labeled bym and channels denoted b
c. The small number of decay channelsL in our experi-
ments, i.e.,L5224, leads to a set of strongly fluctuatin
widthsGm . We remark that this allows us to examine qua
tum phenomena such as the nonexponential decay of
spectral autocorrelation function@21#.

The simplified theoretical model that was introduced
Sec. III A, however, is by construction not suited to descr
this general case, but rather explains spectra of systems

FIG. 3. The phenomenon of the correlation hole due to the tw
level form factor is clearly visible for small values oft. The func-
tion 12b2(t) is displayed for the cases of Poisson and GOE sta
tics according to Eq.~9!.
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a constant total width. This situation can arise due to a h
number of decay channels@33# or due to certain peculiaritie
of the physical system or the measurement@11,15#. As men-
tioned above, the present simplification concerns the lo
time behavior ofuC(t)u2 and not the correlation hole tha
shows up on short-time scales. This simplification is n
valid if there are sizable correlations between the intensi
ym and the total widthsGm . Therefore, in the present discu
sion, it is sufficient to assume a realistic distribution for t
intensitiesym . This defines an adequate model for raw sp
tra and has to be viewed in contrast to thed distribution of
the intensitiesym considered in Sec. III C. It should be em
phasized that we neglect, for reasons of consistency, in
ference terms between the individual resonances. Henc
the terminology of scattering theory, our model applies to
case of isolated resonances.

If the spectrumI (x) has been measured in reflection i
say, channela, the intensitiesym of the mth resonance are
given by

ym5Gma , ~14a!

whereGma is the partial width of the resonance with respe
to the channel, i.e., the antenna,a. Experiments as well as
the theory of random matrices show that the partial wid
are distributed according to a Porter-Thomas law@5,6,21#,
which describes a fully chaotic system, resulting in

a5 1
3 . ~14b!

If, however, the spectrumI (x) has been measured in tran
mission from channela to, say, channelb, the intensities
ym are given by the products

ym5Gma Gmb ~15a!

of the partial widths with respect to the entrance and e
channels. TakingGma andGmb to be statistically independen
variables with Porter-Thomas distributions one arrives at

a5 1
9 . ~15b!

These two values ofa simply reflect a Gaussian distributio
for the decay amplitudes that is at the core of the Por
Thomas law.

Hence, as indicated already, the statistical fluctuation
the weighty more or less suppress the correlation hole. T
d distribution considered in Sec. III C is much more favo
able for the visibility of the correlation hole than a realis
distribution that will always givea,1. Reducing these fluc
tuations would restore the correlation hole. This can
achieved by the superposition of statistically independ
spectra. Suppose that spectra have been measured via
all possible, combinations of theL antennas attached to
given resonator. The positionsxm of the resonances are th
same in all spectra; the intensitiesym , however, vary from
spectrum to spectrum. Thus the intensities of the spect
obtained from superimposing all these spectra will fluctu
much less. In the limit of a superposition of infinitely man
spectra, all intensities will be the same and we are bac
the case of the stick spectrum.
h
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We want to make this argument more quantitative. Fi
we discuss reflection measurements. We write themth inten-
sity of the superposition of all possible reflection spectra
the form

ym5 (
a51

L

Gma . ~16a!

Under the assumptions thatGma has Porter-Thomas statistic
and that the average value is independent ofm we find

a5
L

L12
. ~16b!

ForL51 one recovers the result~14b! and, as expected, thi
expression approaches unity for largeL.

Second, we turn to transmission measurements. Add
up all possible transmission spectra, we obtain themth inten-
sity

ym5
1

2 (
a,b51
aÞb

L

Gma Gmb . ~17a!

Under the same assumptions as above this leads to

a5
L21

L17
. ~17b!

Again, this is consistent with the result~15b! for L52.
Moreover, for largeL, the expression~17b! approaches
unity, as it should.

IV. APPLICATION TO EXPERIMENTAL DATA

After some general considerations in Sec. IV A, w
present the analysis of stick and raw spectra in Secs. I
and IV C, respectively.

A. General considerations

The Fourier transformC(t) of the measured spectrum
I (x) does still contain all the information. As is well known
if the experimental data consist of many levels in a su
ciently long interval, the Fourier transform can, before u
folding, be used to obtain information about the period
orbits of the system@34# that manifest themselves in a ric
structure consisting of many peaks. Here, however, we
at an understanding of the generic statistical features of
experimental data. In other words, since we are not intere
in resolving individual properties such as periodic orbits,
have to average over all realizations of the physical system
question. This, however, is precisely what random ma
theory did for us when we went from the autocorrelati
function ~4! to its ensemble average. According to Delo
et al. @12# the ensemble average can be simulated by ap
ing a smoothing procedure to the experimental decay fu
tion uC(t)u2. It turns out@12# that the most appropriate pro
cedure is a convolution ofuC(t)u2 with a Gaussian. Hence
we have to compare the theoretical results to the functio
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^uC~ t !u2&5E
2`

1`

dt8uC~ t8!u2
1

A2ps t
2
expS 2

~ t2t8!2

2s t
2 D ,

~18!

where the variances t was chosen to depend on the time
s t5t/10. This procedure is referred to as ‘‘full Gaussi
smoothing.’’

B. Correlation hole for stick spectra

We now analyze the sequences of levels that were
tracted from the measured spectra, i.e., the stick spectr
some cases, we perform an additional test of GOE chara
istics following the discussion of Ref.@13#. A theorem due to
Dyson and Mehta@35# states that if one takes a GOE spe
trum $ f 1 , f 2 , f 3 , . . . % and divides it into two sequences o
odd and even indices, i.e., into$ f 1 , f 3 , f 5 , . . . % and
$ f 2 , f 4 , f 6 , . . . %, then each of these two spectra obeys, a
proper unfolding, the GSE statistics. Following this idea,
experimentally found stick spectrum was divided into tw
equivalent sets with half the number of eigenfrequencies,
together sequentially, and the whole analysis was repea
The theoretical prediction is given by using Eq.~10! in the
expression~12!. In contrast to the GOE case, the GSE fo
factor b2(t) has a singularity att51 due to the different
oscillatory structure of the two-level correlation functio
Y2(x). Thus one expects a characteristic peak in the func
^uC(t)u2& at this timet, which gives information on correla
tions on the scale of about two mean level spacings.
pointed out in Ref.@13#, the decay function constructed i
this way by omitting every other level contains informatio
on higher than two-level correlations of the original spe
trum.

In Secs. IV B 1 and IV B 2, we discuss the hyperbola a
the stadium billiard, respectively. In Sec. IV B 3, we analy
the stick spectrum of the 3D Sinai billiard.

1. Hyperbola billiard

The upper part of Fig. 4 shows the result for the measu
spectrum of the hyperbola-billiard whose shape is displa
in Fig. 1. The full line is the experimental result fo
^uC(t)u2& according to Eq.~18!.

Since the hyperbola billiard has been proven@36,37# to be
fully chaotic in the classical limit, one expects@38# to find
GOE fluctuations in the spectrum. Indeed, as Fig. 4 sho
the agreement with the theoretical prediction of Eq.~12! with
b2(t) given by Eq.~9! is very good. Note that̂uC(t)u2& and
Eq. ~12! have been divided byN ȳ2 to allow a comparison
with Fig. 3.

The test of GSE statistics according to the Dyson-Me
observation mentioned above yields the curve shown in
lower part of Fig. 4. Again, the agreement with the theory
good. Here, to be consistent, we have smoothed the the
ical curve, too, with the help of Eq.~18!. We do not exclude
the possibility that the discrepancy between this curve
the experimental result att51 might hint at deviations of the
higher-order and the medium-range correlations in the sp
trum from the GOE prediction. Due to the limited amount
data, however, we cannot perform more detailed tests, w
would be necessary to make a definite statement.
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2. Stadium billiard

The Bunimovich stadium billiard@39# displayed in Fig. 1
is also totally chaotic in the classical sense, but it has
additional feature: In contrast to the hyperbola, the stadi
possesses one neutrally stable and nonisolated periodic o
the so-called bouncing ball orbit that propagates between
two straight and parallel segments of the geometry. T
lends a certain type of regular characteristics to the syst
Thus, in calculatinĝ uC(t)u2&, we test the influence of this
remaining regularity on the correlation hole. The result
given in Fig. 5, where in the lower part the bouncing b
orbit has been removed by extracting the term that
bouncing ball orbit contributes to the smooth part of the le

FIG. 4. Function̂ uC(t)u2& for the stick spectrum of the hyper

bola billiard. Note that the ordinate is divided byN ȳ2 in order to
allow an immediate comparison with Fig. 3 by using Eq.~12!. The
full line is the experimental result and the dashed line the theor
cal result.

FIG. 5. Function̂ uC(t)u2& for the stick spectrum of the stadium
billiard, as in Fig. 4. The experimental curve~solid line! in the
upper part includes the bouncing ball contribution. In the low
part, the bouncing ball contribution has been removed. The theo
ical prediction~dashed line! is the same in both cases.
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density@40# together with the common Weyl contribution i
the unfolding procedure. As can be seen from the figure,
extraction amounts to a very slight correction towards
pure GOE characteristics. Due to the mapping of long-ra
spectral properties onto short times, the correlation hol
quite insensitive to the bouncing ball orbit.

3. 3D Sinai billiard

Finally, we have considered a spectroscopic system
generalizes the statistical concepts of quantum chaos in
sense that, although it does not represent or simulate a q
tum system, its spectral features are found to coincide w
GOE characteristics. As in the case of elastomechan
eigenmodes@25–27#, this indicates that many classical wav
phenomena might follow the predictions of random mat
theory. The system at hand is the 3D Sinai billia
@23,24,26,27# shown in Fig. 1. Its wave dynamics is de
scribed in terms of the vectorial Helmholtz equation in thr
dimensions. The resulting function̂uC(t)u2& is displayed in
Fig. 6. As in the case of the hyperbola billiard, we al
performed the GSE test on our data.

Note that, in this geometry, the eigenvalues of t
quantum-mechanical Schro¨dinger equation as well as the e
genvalues of the vectorial electromagnetic Helmholtz eq
tion show, due to the bouncing ball orbits, slight deviatio
from pure GOE behavior@23# in other statistics such as th
number varianceS2 or the spectral rigidityD3. It is not
possible to draw direct conclusions from that to the pres
system since the ray limit of the vectorial Helmholtz equ
tion is different from the classical limit of the Schro¨dinger
equation. However, it could be speculated that the influe
of the corresponding bouncing ball orbits in the present s
tem is suppressed due to an effective average over all
different lengths. In any case, the effect of the bouncing b
orbits becomes visible at comparatively large lengths in
spectrum. Thus, in our observable, it cannot be extrac
with statistical significance since the Fourier transform m
it onto values oft that are of the order of the inverse leng
in the spectrum. Remember that the correlation hole is fo
at values oft that are roughly of the order unity. Neverth

FIG. 6. Function^uC(t)u2& for the stick spectrum of the 3D
Sinai billiard, as in Fig. 4.
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less, a suppression of the peak att51 in the experimental
curve is seen in the GSE test in the lower part of Fig. 6. O
might be tempted to interpret this as due to those effe
Again, more detailed tests would require more data and
this particular case, a thorough theoretical discussion of
ray limit of the vectorial Helmholtz equation too.

C. Raw spectra

As far as the stick spectra are concerned, the phenome
of the correlation hole is obviously well understood. T
agreement with theoretical predictions for all considered s
tems is satisfactory. We now apply the method to origin
and idealized raw spectra in Secs. IV C 1 and IV C 2, resp
tively. In Sec. IV C 3, the influence of certain statistical flu
tuations on our findings is discussed and demonstrated u
synthetic spectra.

1. Original raw spectra

We analyze original raw spectra of the hyperbola with
total number ofL53 antennas. Besides the unfolding, n
further preparation has been performed. On Fig. 7, the fu
tion ^uC(t)u2& is shown for raw spectra of the hyperbo
billiard. The ordinate is in principle as in Figs. 4–6: Th
function ^uC(t)u2& is given in units ofNy2 in order to allow
an immediate comparison with Fig. 3 and all other simi
figures; see Eq.~7!. It is, however, not obvious how to obtai
Ny2 from a spectrum unless one identifies and analyzes
the resonances. We proceed as follows.

If one assumes the line shapeL(x) to be a Lorentzian
with width G, then the integral over the square of the spe
trum I (x) of Eq. ~1! is

E
2`

1`

I 2~x!dx5
4p

G3 (
m51

N

ym
2'4p

Ny2

G3 . ~19!

This quantity is obtained by numerical integration. The wid
G is obtained by a fit procedure from the exponential dec

FIG. 7. Function̂ uC(t)u2& for original raw spectra of the hyper
bola billiard. The two parts of the figure show the result from
spectrum measured in reflection (Sii ) and one measured in trans
mission (Si j ). The scale of the ordinate is discussed at Eq.~19!.
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of ^uC(t)u2& for t.1 as is illustrated by Fig. 7. See also th
discussion at the end of Sec. III A. From these two piece
information, Eq.~19! yieldsNy2.

In the upper part of Fig. 7, the function^uC(t)u2& is shown
for a raw spectrum of the hyperbola measured in reflec
mode. Unfortunately, this function cannot be interpreted
terms of the correlation hole because it is dominated, up
t'2, by a background that is typical for the reflection me
surements. Since the radio-frequency cables we used fo
transmission between source and resonator are interrupte
certain nonideal cable connectors, the measured frequ
spectrum is modulated by the signal that is generated thro
reflections at these connectors and the resonator; see th
cillations of the spectral background in Fig. 1 of Ref.@21#.
Furthermore, the size of the resonators and the lengths o
cables are of the same order. Therefore, the period of
spectral modulation is of the order of the mean level spac
and the power spectrum betweent50 andt'2 is dominated
by this artificial background peak. Note, however, that t
does not at all preclude the analysis of every given resona
becauseG is very small compared to the period of the abo
oscillations.

The transmission spectra are free from that problem. N
ertheless, the correlation hole is not visible in the lower p
of Fig. 7, wherê uC(t)u2& is given for a raw spectrum of th
hyperbola measurement in transmission mode. At the p
of the correlation hole, one observes fluctuations that will
discussed in Sec. IV C 3 below. They are due to the stat
cal fluctuations of the intensitiesym . Note that the value of
a51/9, expected from Eq.~15b! for this case, leaves little
hope to see the correlation hole. According to Sec. III D,
value of a should improve if several spectra are superi
posed. We have done so for all transmission spe
(L53) of the hyperbola. According to Eq.~17b!, one then
expectsa51/5. Figure 8 shows that this is not enough. Co
pared to the lower part of Fig. 7, the fluctuations are m
suppressed, but the hole itself cannot be identified.

2. Idealized raw spectra

In order to acquire a deeper understanding of the stat
cal effects that are important for the correlation-hole meth
we study ‘‘idealized raw spectra.’’ They are obtained by p
viding the experimentally found stick spectra with realis
intensities: We use the experimentally determined spec
properties of the stadium billiard withL53 channels, i.e.,

FIG. 8. Function^uC(t)u2& for three superposed transmissio
spectra of the hyperbola. The scale of the ordinate is discusse
Eq. ~19!.
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the full set of parameters for the first 950 resonances inc
ing their positionsxm as well as three sets of partial width
Gmc , which were shown to obey the Porter-Thomas distrib
tion @21#. Note that these partial widths have been separa
normalized to unity for each channel, i.e.,^Gmc&51. The
resulting functionŝ uC(t)u2& for different cases are given in
Fig. 9. In the upper half of the figure, transmission spec
Si j for iÞ j are analyzed. In the upper left part, a sing
transmission spectrum is used. This meansL52 in Eq. ~17!
and the theory predictsa51/9. In the upper right part, thre
transmission spectra have been superposed, i.e.,L53, and
the prediction isa51/5. In the lower half of the figure, re
flection spectraSii are analyzed. A single reflection spectru
is used in the lower left part. This meansL51 in Eq. ~16!,
yielding a51/3. In the lower right part,L53 reflection
spectra have been superposed and Eq.~16! predictsa53/5.
Note, in addition, that̂ uC(t)u2& and the function in Eq.~7!
were divided byNy2. Obviously, there is a strong deviatio
between the experimental and the theoretical curve in
case of the single spectra in the left column of Fig. 9. For
superpositions, this deviation is reduced.

3. Statistical fluctuations of the squared intensities
and their impact

To give a qualitative interpretation of this deviation, w
study the statistical fluctuations ofuC(t)u2 in the long-time
limit t→`, where the power spectrum is free of effects d
to level clustering. We will show that the deviation just o
served can be attributed to, at first sight unexpectedly, la
statistical fluctuations of the squared intensities in the sp
tra. From Eqs.~1! and ~2! with L(x)5d(x) one obtains

uC~ t !u25 (
m51

N

ym
21 (

m,n51
mÞn

N

ymynexp@2p i ~xm2xn!t#. ~20!

In the limit t→` and due to the full Gaussian smoothing, t
strongly fluctuating second term of this expression is s
pressed. We define this limit as

X5 lim
t→`

^uC~ t !u2&5 (
m51

N

ym
2 . ~21!

at
FIG. 9. Function̂ uC(t)u2& for an idealized raw spectrum of th

stadium billiard, as in Fig. 4. See the detailed explanation in
text. The experimental curves are given as solid lines, the theo
cal ones as dashed lines.
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The aforementioned ensemble average in the limitN→`
yields the quantity

X̄5 lim
N→`

X5Ny2, ~22!

which is exactly the expression we used for the normali
tion in the previous analysis of the idealized raw spec
Now, to estimate the statistical fluctuations ofX, we have to
calculate its second momentX2 and the relative standar
deviation

d relX5AX22 X̄2

X̄2
. ~23!

In the case of a single transmission spectrumSi j with
L52, one hasym5GmaGmb , which yields

d relX5
1

AN
AG4

2

G2
4 21. ~24!

This behaves, as expected, like 1/AN. However, since the
partial widths are Porter-Thomas distributed, the high
order moments ofGm obey

Gk5~2k21!!! Ḡ k, ~25!

implying that the statistical fluctuations strongly increa
with the order of the statistical moment due to the fac
(2k21)!!. In the present case ofN5950 resonances on
obtainsd relX'0.38, which is in good agreement with th
experimental curve given in Fig. 9. For an increasing num
of channelsL, this relative variance shrinks since the sup
position reduces the fluctuations in the intensitiesym . For
vanishing fluctuations in the intensities, one hasd relX50.
Since the parametera is generated through the statistic
moments of theym , both the normalization and the correl
tion hole itself approach the theoretical prediction only as
number of included open channels is increased.

Remarkably, a superposition of reflection spectra even
the small number of onlyL53 open channels allows, in
principle, a reobservation of the correlation hole since
havea53/5. For the superimposed transmission spectra w
a51/5, the hole is still weak. This explains why the ho
could not be observed in the superposition of the origi
transmission spectra of the hyperbola in Fig. 8. Unfor
nately, the favorable behavior of the reflection measurem
cannot be exploited because of the experimental artifact
cussed in Sec. IV C 1.

In order to demonstrate the influence of the numberL of
open channels on the correlation hole and on the norma
tion, we have finally calculated several superpositions
synthetic spectra for the hyperbola. We used the experim
tal spectrum of the positionsxm and up toL510 numerically
simulated spectra of Porter-Thomas distributed partial wid
Gm with ^Gmc&51. Thus, in contrast to the idealized ra
spectra of the Sec. IV C 2, where the amplitudes were ta
from the measurement, the synthetic spectra contain num
cally generated amplitudes. Figure 10 displays the results
L52, 3, 5, and 10. Since we treated the spectra as meas
-
.
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in transmission mode, we have, according to Eq.~17!, ratios
of the moments given bya51/9, 1/5, 1/3, and 9/17, respec
tively. Obviously, the systematic increase inL leads to a
continuing reduction of the statistical fluctuations ofym , de-
scribed byd relX. ForL510 the agreement between the e
perimental and the theoretical curve is quite good. This de
onstrates, for transmission and reflection measurements,
the correlation hole can be observed by superimposing in
pendent spectra that individually do not show a signific
correlation hole.

V. CONCLUSION

In the present work on the correlation-hole method,
have evaluated the decay function^uC(t)u2& of stick spectra
as well as that of original and idealized raw spectra for va
ous two- and three-dimensional billiard systems. The st
spectra lead to the correlation hole as expected from ran
matrix theory. The nongeneric features implied by the pr
ence of bouncing ball orbits in certain billiards did not affe
the correlation hole in any observable way.

The fluctuations of the resonance intensities that
present in the raw spectra have a strong impact on the res
They decrease the visibility of the correlation hole. At t
same time, they introduce fluctuations such that, even w
approximately 1000 resonances in the spectrum, the de
function^uC(t)u2& may fall quite far from its expected shap
This again precludes the observation of the correlation h
It is, however, restored if sufficiently many spectra with s
tistically independent intensities are superimposed.

FIG. 10. Dependence of the visibility of the correlation hole
the numberL of open channels forL52, 3, 5, and 10. The scale o
the ordinate is as in Fig. 4.
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