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Correlation-hole method for the spectra of superconducting microwave billiards
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The spectral fluctuation properties of various two- and three-dimensional superconducting billiard systems
are investigated by employing the correlation-hole method. It rests on the sensitivity of the spectral Fourier
transform to long-range correlations and is thus an alternative technique to study chaotic dynamics. First, we
apply the method to the eigenfrequencies that are extracted from the measured resonances. Second, we analyze
the unfolded raw spectra, including the shape of the resonances. The merit of the method lies in a clear
separation of the statistics due to the positions and due to the shape of the resonances. However, we show that
statistical fluctuations of the intensities of the resonances have a strong impact on the observable. Therefore,
the visibility of the correlation hole is studied as a function of the number of independent statistical variables
entering into the intensities. The visibility improves if independent spectra are superimposed.
[S1063-651X97)09306-9

PACS numbe(s): 05.45+b, 03.65.Ge, 41.20.Jb

I. INTRODUCTION spacing distribution and the spectral rigidf§,10]. This re-
quires one to extract the positions of the levels from the
In recent years, the experimental study of chaotic dynammeasured spectrum. Thus the analysis is done on the so-
ics in billiard systems has attracted considerable interest. Urf:alled stick spectrum, i.e., the sequence of those eigenener-

like nuclei, atoms, molecules, or solid-state probes, billiarddi€S or eigenfrequencies that could be identified in the raw
Spectra. However, one often has to deal with poorly resolved

aspects of chaotic dynamics. This “toy model” feature spectra, which prevents some Ieve]s from b'eing found. This
*“missing level effect” has a considerable impact since it

which the aforementioned systems lack, makes billiard SyS(:ounterfeits correlations that do not exist. Fluctuation mea-
tems very useful for studies of chaotic dynamics. EI(:“Ctm'sures that are less sensitive to the missing level effect are

magnetic billiards simulating the corresponding quantumy - tore highly desirable

systems were experimentally investigateq for the first time in In molecular physics, such a technique was developed by
Refs.[lTS]. T.h'e use qf supercpnductlng 'mstead of nor'maIIyLeviandieret al. [11] for the analysis of the long-range cor-
conducting billiards yields an immense improvement in theyg|ations. The properly smoothed Fourier transform of the
quality of the measured spectra. Results were presented gpectral autocorrelation function maps the long-range corre-
Ref. [4]. lations onto short scales in Fourier space. As compared to
The fluctuation properties of a rich variety of systems influctuations of regular systems, chaotic dynamics causes a
nuclear, atomic, molecular, and solid-state physics have beebnsiderable suppression of this Fourier transform near the
studied experimentally and theoretically. In the case of fullyorigin, a so-called correlation hole. This has been experimen-
developed chaos, they are found to be universal and venally observed in spectra of the molecules acetylene,
accurately described by random matrix thepby-10. Due  methylglyoxal, and nitrogendioxyflL1,12. Recently it was
to general symmetry constraints, a time-reversal invarianshown that nuclear spectra exhibit the correlation hole, too
system with conserved or broken rotational invariance i§11,13.
modeled by the Gaussian orthogonal enseniBIBE) or the As pointed out already, fluctuation measures such as the
Gaussian symplectic ensembl€SE), while the Gaussian nearest-neighbor spacing distribution or the spectral rigidity
unitary ensembléGUE) describes time-reversal noninvari- can only be used for the extracted stick spectrum. The
ant systemg6]. Regular systems, on the other hand, showcorrelation-hole method of Reff11], however, is also appli-
significantly different fluctuation properties. Remarkably, cable to the raw spectra since the Fourier transform separates
they are, unlike the chaotic ones, not generic and can diffethe statistics of the positions of the eigenenergies from the
from system to system. Although one often encounters thetatistics of the intensities and widths. A possibly faulty and
complete lack of any correlations, which is referred to asincomplete extraction of the positions and the widths from
Poisson regularity, the extreme opposite, i.e., the totally corthe spectra can thus be avoided. Consequently, the
related spectrum of the harmonic oscillator, also falls into thecorrelation-hole method is, in principle, less sensitive to the
regular class. missing level effect and it is worthwhile to study its applica-
In order to study the fluctuation properties on short andility to other physical systems.
long scales, one commonly analyzes the nearest-neighbor The theory of the correlation hole for realistic spectra, i.e.,
including the linewidths, was worked out in R¢L4] in the
framework of a scattering model. In the same picture, the
*Present address: Siemens AG, Bereich Medizinische Technilgorrelation hole observed by laser spectroscopy in methyl-
D-91052 Erlangen, Germany. glyoxal[11] was numerically simulated in RgfL5]. A sum-
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FIG. 1. Geometries of the superconducting resonators that were used in the experiments. Note that all systems are desymmetrized to
avoid parity mixing. In comparison with the full systems, this yields a quarter stadium, an eighth of a hyperbola, and a 48th of a 3D Sinai
billiard, respectively. In the case of the latter, the sides of the drawn cube are 170 mm long and the radius of the removed sphere measures
half of this length, i.e., 85 mm.

mary and a qualitative discussion of the Fourier transform operimentally investigated in a different and very stable 4-K
statistical spectra can be found in REE6]. A conspicuous bath cryostat. Note that the electromagnetic Helmholtz equa-
short version of the theory of the correlation hole is pre-tion is vectorial in three dimensions and cannot be reduced to
sented in Appendix A of Ref17]. In Ref.[18], the correla-  an effective scalar equation. Thus it is structurally different
tion hole is related to its classical analog, the survival probfrom the scalar Schabinger equation. It is of considerable
ability. The correlation-hole method was applied to billiard jnterest that the statistical concepts developed in the theory
spectra by Kudrollet al.[19]. However, these authors stud- of quantum chaos and random matrices are also applicable to
ied only the extracted stick spectra. arbitrary classical electromagnetic wave phenomena. Con-
In the present work, we apply this method to the richceptually, this is similar to the study of spectral fluctuations
variety of billiard spectra that we have measured in recengi elastomechanical eigenmodes in alumin{@5,26 and
years. We have two goals. First, we want to verify the sig-quartz[27] blocks, which are also described very well by
nificance of the correlation hole for billiards of quite differ- random matrix theory.
ent geometries by analyzing the stick spectra of the extracted a|| resonators mentioned above were excited in the fre-
levels. Second, we use the correlation-hole technique for thguency range between 0 and 20 GHz using capacitively cou-
unfolded raw spectra and discuss the merits and the problenp,ﬁng dipole antennas sitting in small holes on the niobium
of such an analysis. We present a method of superimposingiyrface. Using one antenna for the excitation of the resonator
several raw spectra in order to improve upon the visibility ofand either another or the same one for the detection of the
the correlation hole. The excellent resolution of the spectrgnicrowave signal, we were able to measure the transmission
measured in superconducting microwave cavities makes thgr the reflection spectrum of the resonator, respectively, by
recent data the ideal object for such an analysis. employing a Hewlett Packard HP8510B vector network ana-
After a short description of the experiment in Sec. Il, we|yzer. As an example, Fig. 2 shows a typical transmission
present the theoretical concepts in Sec. Ill. We perform th@pectrum of the 3D Sinai billiard in the range between 6.50
anaIySiS of our data in Sec. IV and finish with conclusions inand 6.75 GHz. The Signa| is given as the ratio of output

Sec. V. power to input power on a logarithmic scale. The measured
Il. EXPERIMENT
0 I ] 1 1 Il
Due to the equivalence of the stationary Sclinger
equation for quantum systems to the corresponding Helm o™
holtz equation for electromagnetic resonators in two dimen T 40
sions, it is possible to simulate a quantum billiard of a given &
shape with the help of a sufficiently flat macroscopic elec- ~ -80 |
tromagnetic resonator of the same shpe3]. We have nl ;
experimentally studied several two- and three-dimensione  _;54 ;
(3D) hilliard systems using superconducting microwave :
resonators made of niobium. Figure 1 shows some of th 6.50 8.55 6.60 6.65 6.70 6.75
investigated cavities as well as their dimensions. Early ex Frequency (GHz)

periments using superconducting instead of normally con-

ducting resonators were performed in a desymmetrized Buni- fiG. 2. Transmission spectrum of the 3D Sinai billiard in the
movich stadium billiard and a truncated hyperbola billiardyange between 6.50 and 6.75 GHz. The signal is given as the ratio
[4,20,2] using the 2-K cryostats of a superconducting elec-of output power to input power on a logarithmic scale. The dashed
tron linear accelerator described by Auerhameteal. [22].  vertical lines mark the extracted eigenfrequendigss used in the
Recently, a desymmetrized 3D Sinai billidi2B,24] was ex-  stick spectrum.
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resonances have quality factors of upQe=10’ and signal-  of the autocorrelation function
to-noise ratios of up t&N~70 dB, which makes it easy to

separate the resonances from each other and from the back-
ground. As a consequence, all the important characteristics
such as eigenfrequencies and widths can be extracted with a

very high accuracy{21,28,29. A detailed analysis of the At this point a comment on the assumed independence of the
original spectra yields a total number of approximately 100Qine shapel(x) of the intensitiesy,, is in order. From scat-
resonances for the 2D billiardsyperbola and stadiunand  tering theory{33] it is known that this is the case only if the
nearly 1900 resonances for the 3D Sinai billiard. These einymber A of open decay channels is very large. Strictly
genvalue sequences form the basis of the present test of tegeaking, this is not true for the experiments to be analyzed

A(w)=fj:dQI(Q—w/Z)I(Qer/Z). ()

correlation-hole method. here. The decay channels are the antennas that couple the
cavity to the external world and hence=2-4; see the
lll. THEORETICAL CONCEPTS OF THE discussion below. However, the assumption of independence
CORRELATION-HOLE METHOD is to some extent justified here since it affects only the long-

W e for th . ¢ th der. th time behavior of the decay functiofC(t)|?, whereas the
€ summarize, for theé convenience of Ih€ reader, &, o ation hole is a feature found in the short-time behavior.

|ba3|::f|deasf|nt8ec._ ”ISA anﬁlslé)mvt\a/ ez?jr_ller restﬂts t%n thet.tW?l'\/loreover, the more general theory also shows that the ne-
evel form 1actors in Sec. - e dIScuss he theoretical o + ot interference effects as done in Ed) is justified.

results on the correlation hole for stick and raw spectra | hus, it turns out that our simplification still yields a satis-

Secs. Il C and Il D, respectively. factory description of the correlation hole in all cases we
studied.
A. Basic ideas Replacing the energy average in Hd) by the average
Consider a spectrut(E) or I(f) measured as a function OVer an ensemble of resonances, one can make use of two

of energyE or, in our case, frequencf. This spectrum is results of random matrix theof$s,6,21: (i) they,, are inde-
described as a finite superposition of isolated or interfering?endent of thex, and(ii) for u# v the intensitiey .y, are
resonances of a given universal shagé) with statistically ~ Independent of each other. The functigh then can be cast
distributed positions, intensities, and widths. Although theinto the form

shape is often known to be a Lorentzi@8,29, we keep the

discussion general. In order to analyze the true fluctuations, A(w)zNFJde’L(Q—w/2—x’)L(Q+w/2—x’)

one removes secular variations of the level density, i.e., the —w

Weyl- or Thomas-Fermi contributiofB0—32. To this end,

one introduce$§7] the smooth parVe\(f) of the integrated +N_2—N_2f+mdx’ f+wdx”L(Q—w/2—x’)
level density as the new coordinate by settitig NWeY(f) y y —w —

for our experimental and theoretical discussions. Since we

wish to study generic fluctuations, we shall henceforth as- XL(Q+ ol2=X") Yo (X" = X"). ®)

sume that this unfolding procedure has been performed and
write 1 =1(x). This implies that, in the variable, the mean HereY,(x) denotes the Dyson-Mehta two-level cluster func-

level spacing is unity everywhere. tion [6]. It describes the two-point correlations; more pre-
w=1,... N, on this unfolded scale. In the following, the nances separated by the distancen the unfolded scale.

level numbe is always assumed to be large. To simplify Thus, for large arguments, the correlations have to disap-
the theoretical description, we make the further assumptiopear andY,(x) approaches zero. Note ihﬁ?, the square of
that the line shapé&(x) does not depend on the intensities the first moment of the intensities, ayd, the second mo-
y,. for a given resonancg in the expression ment, appear in Eq5).

We introduce the Fourier transform of the two-level clus-

N
ter function,
100= 2, ¥, LOx=x,), (1)
=
—+ oo
where the line shape is normalized to unity. The observable by(t)= ffoc dxYz(x)exp(2mixt), ©®
of interest is the decay function, i.e., the modulus squared of
the Fourier transform of the spectrum and analogously the Fourier transfotnt) of the line shape
o > L(x). The functionb,(t) is referred to as the two-level form
IC(t)|2= f dxI(x)exp(2mixt)| . ) factor [6]. Just like the two-level cluster function, it has to
—w vanish for large arguments Since the last term on the right-

hand side of Eq(5) contains a convolution, we can make use
The Fourier coordinate defines an unfolded time. This ex- of the convolution theorem to evaluate the Fourier transform
pression can be rewritten as the Fourier transform of A(w). Collecting everything, one find€1,14,16,17 for
non-negative times

+oo
2_ .
e _f Gl expzm ol ® |C(H)2=NyZa(t) - NyZ T ()21 - aby(t)],  (7)
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where we denote the ratio of the statistical moments by 1.5 e

a=yy?. ®) S pofRdsen
The correlation hole is described by the function QN C ]
[1— ab,(t)], while |L(t)|? describes the decay of the reso- _|‘ 05 T
nances. Thus the statistics of the positions is separated from r/ GOE ]
the statistics of the intensities. Th# function in Eq. (7) ool b bt ]
occurs since we assumed to be very large. For a finite 0 1 2 3 4 5
number of levels, this contribution will acquire a width as t

discussed in detail in Reff14,17]. Due to the high number
of levels in our data, we disregard this contribution in the FIG. 3. The phenomenon of the correlation hole due to the two-
following. level form factor is clearly visible for small values tf The func-

If the resonances are well isolated, thﬁ}(t”z varies tion 1—b,(t) is displayed for the cases of Poisson and GOE statis-
much more slowly tharb,(t). In the extreme case of van- tics according to Eq(9).
ishing widths, i.e.L(x)= &8(x), the function(7) approaches . ,
NF for large timest. For the more realistic Lorentzian line by 6 funCt'OE' If, moreover, all of them have the same in-
shap€28,29 one had_ (t) = exp(—#Tt), whereTl is the total ~ t€nsity,y, =Y, Eq. (1) reduces to
width, implying that the functior{7) decays exponentially. N
I(x)=@l S(X—X,), (12)

B. Correlation hole and two-level form factors

For the convenience of the reader, we collect here th@uhich is nothing but the spectral function. It serves as the
well-known results for the form factors,(t) introduced i mathematical definition of the term “stick spectruni12].
Eq. (6). The case that the positions ,x, of any two differ-  Formally, the probability distribution of the intensity, is
ent re;o_nance,a;ﬁ VI are c;)mglbet_ely ulncohrrelateoll IS rleflerred given by aé distribution, which impliesy?=y?; hence, ac-
to as Poisson regularif$, 7). Obviously, the two-level clus- cording to the definition(8), we find a=1. Consequently,

ter function must be zero everywhergbs*°{x)=0, and the function|C(t)|2 of Eq. (7) becomes

therefore also b5°°tt)=0, which results in |C(t)|?
~l_\|y2=const even for small values of There is no corre- |C(t)[>=Ny?[8(t)+1—Dby(t)]. 12
lation hole.

In the case of fully developed chaos, the statistics of thélhis is the case of maximum visibility of the correlation
positions is described by the Gaussian ensemf@igsThe hole. For a realistic distributiop(y) of the intensities, we
general symmetry constraints imply that a time-reversal inwill always find values ofa that are smaller, often consid-
variant system with conserved or broken rotational invari-erably smaller, than unity.
ance is modeled by the Gaussian orthogonal or the symplec-
tic ensemble, while the Gaussian unitary ensemble describes D. Correlation hole for raw spectra
time-reversal noninvariant systems. We summarize the re- . )
sults for the form factor§6]. The situation most commonly The typical raw spectra of our resonators can be described

encountered is described by the GOE, yielding as a superposition of isolated Lorentzian resonafze29
with statistically distributed locations, intensities, and

co 1-2t+tin(1+2t), O0O<t=l widths. This closely parallels the situation of isolated reso-
b3 qt)= Clttin[(2t+ 1)/(2t-1)], t>1 ) nances in a compound nucleus scattering experirf@3it
' ' Due to a minimized surface resistance in the superconduct-

This function is displayed in Fig. 3. It corresponds to a decaynd billiards, the total width is basically composed of a sum

function (7) for a=1, which has been normalized iyy?. OV’ partial widths that describe the power dissipation into

The GSE form facto; is given by the A decay channels realized by the antennas. Thus each
total width is given by

1—-t/4+(tin|]1—t|)/4, O<t<2

0, t>2 (10

bSSE<t)=[

A
F,L:;l T (13

and thus exhibits a divergence tat 1. Importantly, for all
fully chaotic cases, we have for vanishing timeg0)=1.  for every resonance labeled hy and channels denoted by
Thus, according to E7), the deepest point of the correla- C- The small number of decay channelsin our experi-

tion hole is reached for small values of the titnend has the Ments, i.e.,A=2-4, leads to a set of strongly fluctuating
value|C(t) |2~ NF(l— a). widthsT',,. We remark that this allows us to examine quan-

tum phenomena such as the nonexponential decay of the
spectral autocorrelation functid21].
The simplified theoretical model that was introduced in
Suppose that all resonances have a vanishing width, i.eSec. Il A, however, is by construction not suited to describe
we consider a sequence of levels at positirpsepresented this general case, but rather explains spectra of systems with

C. Stick spectra
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a constant total width. This situation can arise due to a high We want to make this argument more quantitative. First,
number of decay channdl33] or due to certain peculiarities we discuss reflection measurements. We writegthieinten-

of the physical system or the measuremdrit 15. As men-  sity of the superposition of all possible reflection spectra in
tioned above, the present simplification concerns the longthe form
time behavior of|C(t)|?> and not the correlation hole that

shows up on short-time scales. This simplification is not

valid if there are sizable correlations between the intensities V=2 Tpa. (163
Yy, and the total widthd’ , . Therefore, in the present discus-

sion, it is sufficient to assume a realistic distribution for theU der th ) HEL - has P Th .
intensitiesy,, . This defines an adequate model for raw spec-JNder the assumptions the,, has porter-Thomas statistics

tra and has to be viewed in contrast to helistribution of ~ and that the average value is independeng ofie find
the intensitiesy,, considered in Sec. Il C. It should be em-

phasized that we neglect, for reasons of consistency, inter- = L (16h)
ference terms between the individual resonances. Hence, in A+2°

the terminology of scattering theory, our model applies to the

case of isolated resonances. For A =1 one recovers the resilt4b) and, as expected, this

If the spectruml (x) has been measured in reflection in, expression approaches unity for large
say, channeh, the intensitiesy,, of the uth resonance are Second, we turn to transmission measurements. Adding

given by up all possible transmission spectra, we obtaingkieinten-
sity
Yu=TLa: (149
1 A
wherel,, is the partial width of the resonance with respect yﬂ=§ab2:1 | R (179

to the channel, i.e., the antenra, Experiments as well as
the theory of random matrices show that the partial widths

are distributed according to a Porter-Thomas [&6,21,  under the same assumptions as above this leads to
which describes a fully chaotic system, resulting in

a#b

A-1
(14b) a= 35 (170

W=

a=

If, however, the spectrurh(x) has been measured in trans-
mission from channeh to, say, channeb, the intensities
Yy, are given by the products

Again, this is consistent with the resull5b) for A=2.
Moreover, for largeA, the expression(17b) approaches
unity, as it should.
yM:F,ua F,ub (153)
IV. APPLICATION TO EXPERIMENTAL DATA

of the partial widths with respect to the entrance and exit
channels. Taking',, andI’ ,;, to be statistically independent
variables with Porter-Thomas distributions one arrives at

After some general considerations in Sec. IVA, we
present the analysis of stick and raw spectra in Secs. IV B
and IV C, respectively.

ol

(15b

“ A. General considerations

These two values ok simply reflect a Gaussian distribution ~ The Fourier transfornC(t) of the measured spectrum
for the decay amplitudes that is at the core of the Portert(x) does still contain all the information. As is well known,
Thomas law. if the experimental data consist of many levels in a suffi-

Hence, as indicated already, the statistical fluctuations ofiently long interval, the Fourier transform can, before un-
the weighty more or less suppress the correlation hole. Thefolding, be used to obtain information about the periodic
6 distribution considered in Sec. Ill C is much more favor- orbits of the systeni34] that manifest themselves in a rich
able for the visibility of the correlation hole than a realistic structure consisting of many peaks. Here, however, we aim
distribution that will always giver<<1. Reducing these fluc- at an understanding of the generic statistical features of our
tuations would restore the correlation hole. This can beexperimental data. In other words, since we are not interested
achieved by the superposition of statistically independenin resolving individual properties such as periodic orbits, we
spectra. Suppose that spectra have been measured via all,h@ve to average over all realizations of the physical system in
all possible, combinations of th& antennas attached to a question. This, however, is precisely what random matrix
given resonator. The positions, of the resonances are the theory did for us when we went from the autocorrelation
same in all spectra; the intensitigg, however, vary from  function (4) to its ensemble average. According to Delon
spectrum to spectrum. Thus the intensities of the spectrurat al.[12] the ensemble average can be simulated by apply-
obtained from superimposing all these spectra will fluctuaténg a smoothing procedure to the experimental decay func-
much less. In the limit of a superposition of infinitely many tion |C(t)|2. It turns out[12] that the most appropriate pro-
spectra, all intensities will be the same and we are back teedure is a convolution diC(t)|? with a Gaussian. Hence
the case of the stick spectrum. we have to compare the theoretical results to the function
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(Jcwl? f+wdtr|c(t,)|2 1 p( (t—t’)2> LS )

= —ex — , -

— /27T(Tt2 20-t2 % :

(19) 1.0 ]

: : 05 N=1057 ]

where the variancer; was chosen to depend on the timeas . 0. T ]

oy=1/10. This procedure is referred to as “full Gaussian 2 --- GOE prediction 7

smoothing.” > 0.0 A

o - A 1

B. Correlation hole for stick spectra =~ 1.0 _— ' == :

We now analyze the sequences of levels that were ex- ;

tracted from the measured spectra, i.e., the stick spectra. In 05 /J 7

some cases, we perform an additional test of GOE character- e --- GSE prediction -

istics following the discussion of Ref13]. A theorem due to o ) T I I I B

Dyson and Meht&35] states that if one takes a GOE spec- ) 1 2 3 4 5
trum {f,,f,,f5, ...} and divides it into two sequences of t

odd and even indices, i.e., int¢f,,f5,fs,...} and

{f2.f4.f6, .. '_}' then each of the;e two Spe,Ctra o_bgys, after FIG. 4. Function(|C(t)|?) for the stick spectrum of the hyper-
proper unfolding, the GS.E statistics. FolIowmg this !dea, thebola billiard. Note that the ordinate is divided W in order to
experimentally found stick spectrum was divided into two ;0. an immediate comparison with Fig. 3 by using Et®). The

equivalent sets with half the number of eigenfrequencies, Py jine is the experimental result and the dashed line the theoreti-
together sequentially, and the whole analysis was repeatega resyit.

The theoretical prediction is given by using EqO) in the

expression(12). In contrast to the GOE case, the GSE form 2. Stadium billiard
factor b,(t) has a singularity at=1 due to the different : . . - . -
oscillatozr(y)structure o?‘ the ytvvo—level correlation function . The Bunimovich s_taghum b||||ar@39] displayed in '.:'g' 1
Y,(X). Thus one expects a characteristic peak in the functiolt a]s_o totally Ch{?.OtIC in the classical sense, but it has. an
(IC(t)]?) at this timet, which gives information on correla- additional feature: In contrast to the hyperbola, the stadium
tions on the scale of about two mean level spacings. A ossesses one neutrally stable and nonisolated periodic orbit,

pointed out in Ref[13], the decay function constructed in t\r/]ve Sot'r(;?”ﬁtd br(])émc;r:g”b ?" Orbr':l ﬂ;?t pr;)pt)sgates raettvrvee_rllr:?e
this way by omitting every other level contains information o straight and p € segments of he geometry. S

: : L lends a certain type of regular characteristics to the system.
on higher than two-level correlations of the original spec- : d ; .
trum g 9 P Thus, in calculating|C(t)|?), we test the influence of this

In Secs. IVB 1 and IV B 2, we discuss the hyperbola andremaining regularity on the correlation hole. The result is

- o : given in Fig. 5, where in the lower part the bouncing ball
:Eg ?t?c?(lusrget():lt"rlt?rr: ’O;eti%eggV2%;P bﬁﬁ;}JVBs’ we analyzeorbit has been removed by extracting the term that the

bouncing ball orbit contributes to the smooth part of the level
1. Hyperbola billiard

The upper part of Fig. 4 shows the result for the measured LS pr "]
spectrum of the hyperbola-billiard whose shape is displayed D ]
in Fig. 1. The full line is the experimental result for 1.0 ]
{|C(1)|?) according to Eq(18). ]

Since the hyperbola billiard has been proy86,37] to be 05 F N=1062 ]
fully chaotic in the classical limit, one expedt38] to find & ! --- GOE prediction -
GOE fluctuations in the spectrum. Indeed, as Fig. 4 shows, 75 o, A I
the agreement with the theoretical prediction of Bc) with = ! ! ]
b,(t) given by Eq.(9) is very good. Note that|C(t)|?) and = y
Eq. (12) have been divided bily? to allow a comparison 1.0 B
with Fig. 3. 1

The test of GSE statistics according to the Dyson-Mehta 0.5 .
observation mentioned above yields the curve shown in the --- GOE prediction 1
lower part of Fig. 4. Again, the agreement with the theory is [0 Yo LT ANENIIN AUV R AR W
good. Here, to be consistent, we have smoothed the theoret- 0 1 2 3 4 5
ical curve, too, with the help of Eq418). We do not exclude t

the possibility that the discrepancy between this curve and

the experimental result &&= 1 might hint at deviations of the FIG. 5. Function(|C(t)|2) for the stick spectrum of the stadium
higher-order and the medium-range correlations in the spegjilliard, as in Fig. 4. The experimental curvsolid line) in the
trum from the GOE prediction. Due to the limited amount of upper part includes the bouncing ball contribution. In the lower
data, however, we cannot perform more detailed tests, whicpart, the bouncing ball contribution has been removed. The theoret-
would be necessary to make a definite statement. ical prediction(dashed lingis the same in both cases.
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1,5|||||||||||||||n||||| 101

10| . E
- ] o ]
- - ] 10 .
o5 N=1877 J :
& --- GOE prediction o E
+ 0.0 e ] = 107
S r ) 1 51
T o10f ] ~ E
- 107" .

05F

--- GSE prediction
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FIG. 6. Function{|C(t)|?) for the stick spectrum of the 3D
Sinai billiard, as in Fig. 4.

Lol ||l

[9)]
(@]
(@)

FIG. 7. Function|C(t)|?) for original raw spectra of the hyper-
bola billiard. The two parts of the figure show the result from a

. . ... . spectrum measured in reflectio;() and one measured in trans-
density[40] together with the common Weyl contribution in mission ). The scale of the ordinate is discussed at @),

the unfolding procedure. As can be seen from the figure, this
extraction amounts to a very slight correction towards thess, a suppression of the peaktatl in the experimental
pure GOE characteristics. Due to the mapping of long-ranggyrve is seen in the GSE test in the lower part of Fig. 6. One
spectral properties onto short times, the correlation hole igight be tempted to interpret this as due to those effects.
quite insensitive to the bouncing ball orbit. Again, more detailed tests would require more data and, in
this particular case, a thorough theoretical discussion of the
ray limit of the vectorial Helmholtz equation too.

Finally, we have considered a spectroscopic system that
generalizes the statistical concepts of quantum chaos in the C. Raw spectra
sense that, although it does not represent or simulate a quan-

. L .~ As far as the stick spectra are concerned, the phenomenon
tum system, |ts_spectral fe_atures are found to coincide Withyt the correlation hole is obviously well understood. The
GOE characteristics. As in the case of elastomechanic

g S . reement with theoretical predictions for all considered sys-
eigenmode$§25-27), this indicates that many classical wave 9 P y

phenomena might follow the predictions of random matrixtems 's satisfactory. We now apply the method to original
theory. The system at hand is the 3D Sinai billiard and idealized raw spectra in Secs. IV C 1 and IV C 2, respec-

O ) tively. In Sec. IV C 3, the infl f certain statistical fluc-
[23,24,26,2T shown in Fig. 1. Its wave dynamics is de- Vey. 1 Sec e Infuence of ceriain statistcal e

; . ! S tuations on our findings is discussed and demonstrated using
scribed in terms of the vectorial Helmholtz equation in three

dimensions. The resulting functidhC(t)|?) is displayed in synthetic spectra.
Fig. 6. As in the case of the hyperbola billiard, we also
performed the GSE test on our data. . )
Note that, in this geometry, the eigenvalues of the We analyze original raw spectra c_>f the hyperbola_l with a
quantum-mechanical Schiimger equation as well as the ei- total number of_A=3 antennas. Besides the l_mfoldmg, no
genvalues of the vectorial electromagnetic Helmholtz equafurther prepzarqtlon has been performed. On Fig. 7, the func-
tion show, due to the bouncing ball orbits, slight deviationstion (IC(1)[%) is shown for raw spectra of the hyperbola
from pure GOE behaviof23] in other statistics such as the billiard. The ordinate is in principle as in Figs. 4-6: The
number varianceS2 or the spectral rigidityAs. It is not  function(|C(t)|?) is given in units ofNy in order to allow
possible to draw direct conclusions from that to the presen@n immediate comparison with Fig. 3 and all other similar
system since the ray limit of the vectorial Helmholtz equa-figures; see Eq7). Itis, however, not obvious how to obtain
tion is different from the classical limit of the Schfimger Ny from a spectrum unless one identifies and analyzes all
equation. However, it could be speculated that the influenctéhe resonances. We proceed as follows.
of the corresponding bouncing ball orbits in the present sys- If one assumes the line shaph€x) to be a Lorentzian
tem is suppressed due to an effective average over all theivith width I", then the integral over the square of the spec-
different lengths. In any case, the effect of the bouncing baltrum I (x) of Eq. (1) is
orbits becomes visible at comparatively large lengths in the
spectrum. Thus, in our observable, it cannot be extracted +
with statistical significance since the Fourier transform maps f
it onto values ot that are of the order of the inverse length
in the spectrum. Remember that the correlation hole is foundhis quantity is obtained by numerical integration. The width
at values oft that are roughly of the order unity. Neverthe- T is obtained by a fit procedure from the exponential decay

3. 3D Sinai billiard

1. Original raw spectra

N 2
* 4 Ny
|2(X)dX= Fl;:l yi%47TF. (19)

— o0
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FIG. 8. Function{|C(t)|?) for three superposed transmission
spectra of the hyperbola. The scale of the ordinate is discussed at
Eg. (19). FIG. 9. Function(|C(t)|?) for an idealized raw spectrum of the

stadium billiard, as in Fig. 4. See the detailed explanation in the

of (|C(t)|2> for t>1 as is illustrated by Fig. 7. See also the text. The experimental curves are given as solid lines, the theoreti-
discussion at the end of Sec. IIl A. From these two pieces of@ 0nes as dashed lines.
'nf?g?ﬁ:ﬁg’p?é;?t)oﬁllezligs ? ytr{e functighC(t)|2) is shown the full set of parameters for the first 950 resonances includ-

for a raw spectrum of the hyperbola measured in reflectio ing their positionsx,, as well as three sets of partial widths

mode. Unfortunately, this function cannot be interpreted inrr““ which were shown to obey the Porter-Thomas distribu-

terms of the correlation hole because it is dominated, up t(glon [21.]' Note tha_t these partial widths h_ave been separately
- ; . normalized to unity for each channel, i.€L ,.)=1. The
t=~2, by a background that is typical for the reflection mea- sulting functiong|C(1)[2) for different caseg are given in
surements. Since the radio-frequency cables we used for t 9 ?n the upber half of the figure transmissiogn spectra
transmission between source and resonator are interrupted fy .for. oy arepgnal ed. In theg ,er left part. a sp'n le
certain nonideal cable connectors, the measured frequen Jn mil iJn ir rynzi ' d Thiupr?w Ans?2 [i)n E' (17') 9
spectrum is modulated by the signal that is generated throug ansmission spectrum 1S used. 1nis me d-

reflections at these connectors and the resonator; see the ?Q—d the theory predicts=1/9. In the upper right part, three

cillations of the spectral background in Fig. 1 of REZ1]. ransmission spectra have been superposed,Alse_.S, and

Furthermore, the size of the resonators and the lengths of tl‘lfe predlctlon isy=1/5. In the Iowgr half of th? figure, re-

cables are of the same order. Therefore, the period of thi ection ?pec”@i are analyzed. A single refleqtlon spectrum

spectral modulation is of the order of the mean level spacin@f used in the lower left part. This means=1 in Eq. (16),

and the power spectrum between0 andt~2 is dominated Y/€!ding @=1/3. In the lower right partA =3 reflection

by this artificial background peak. Note, however, that thisSpewf'jl havg .been superpoged and(E6). preQ|ct§a=3/5.

does not at all preclude the analysis of every given resonandd©té: In .addltlon,ihaﬂC(.t)| ) and the function in Eq??).

becausd” is very small compared to the period of the aboveWere divided byNy?. Obviously, there is a strong deviation

oscillations. between the experimental and the theoretical curve in the
The transmission spectra are free from that problem. Nevcase of the single spectra in the left column of Fig. 9. For the

ertheless, the correlation hole is not visible in the lower parfUPerpositions, this deviation is reduced.

of Fig. 7, wherg(|C(t)|?) is given for a raw spectrum of the . _ _ __

hyperbola measurement in transmission mode. At the place ~3- Statistical fluctuations of the squared intensities

of the correlation hole, one observes fluctuations that will be and their impact

discussed in Sec. IV C 3 below. They are due to the statisti- To give a qualitative interpretation of this deviation, we

cal fluctuations of the intensitigg, . Note that the value of study the statistical fluctuations ¢€(t)|? in the long-time

a=1/9, expected from Eq15b) for this case, leaves little limit t— o, where the power spectrum is free of effects due

hope to see the correlation hole. According to Sec. Il D, theto level clustering. We will show that the deviation just ob-

value of a should improve if several spectra are superim-served can be attributed to, at first sight unexpectedly, large

posed. We have done so for all transmission spectratatistical fluctuations of the squared intensities in the spec-

(A=3) of the hyperbola. According to E¢17h), one then tra. From Eqgs(1) and(2) with L(x)= 8(x) one obtains

expectsae= 1/5. Figure 8 shows that this is not enough. Com-

pared to the lower part of Fig. 7, the fluctuations are more ) N ) N .
suppressed, but the hole itself cannot be identified. |C(1)[*= 21 yi+ > . Y.y exd 2mi(x,—X,)t].  (20)
m= pv=
nFEV

2. Idealized raw spectra o ) )
In the limitt—cc and due to the full Gaussian smoothing, the

In order to acquire a deeper understanding of the stalistisyong)y fluctuating second term of this expression is sup-
cal effects that are important for the correlation-hole methOdpressed. We define this limit as

we study “idealized raw spectra.” They are obtained by pro-

viding the experimentally found stick spectra with realistic N

intensities: We use the experimentally determined spectral X=lim(|C(t)|?)= 2 yi. (21
properties of the stadium billiard with =3 channels, i.e., t—oo =1
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The aforementioned ensemble average in the [t oo

yields the quantity L5 N=1057 S
‘_IIII|III||IIII'IIDIlIIII_
X= lim X=Ny?, (22) Lo ]
N -
_ . . 05F =
which is exactly the expression we used for the normaliza- F ---GOE A=2 7
tion in the previous analysis of the idealized raw spectra. 0.0 F+—+—+++++H+—+++++++++++

Now, to estimate the statistical fluctuationsXfwe have to

calculate its second momeit® and the relative standard
deviation

oo =
[9)] o
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In the case of a single transmission spectr@y with 05 &/‘P/\/\-f

A=2, one hay, =T ,.T ,p, which yields : --- GOE A=5 ]
0.0 B+

1 0} 2 ]
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This behaves, as expected, like/W. However, since the O'00 1 2 3 4 5

partial widths are Porter-Thomas distributed, the higher- t
order moments of’,, obey

FIG. 10. Dependence of the visibility of the correlation hole on
the numberA of open channels foh =2, 3, 5, and 10. The scale of

implying that the statistical fluctuations strongly increase!N® ordinate is as in Fig. 4.

with the order of the statistical moment due to the factor

(2k—=1)!". In the present case oN=950 resonances one in transmission mode, we have, according to @q), ratios
obtains 6,,X~0.38, which is in good agreement with the of the moments given bw=1/9, 1/5, 1/3, and 9/17, respec-
experimental curve given in Fig. 9. For an increasing numbetively. Obviously, the systematic increase A leads to a

of channelsA, this relative variance shrinks since the super-continuing reduction of the statistical fluctuationsyof, de-
position reduces the fluctuations in the intensiyes For  gcribed bys,eX. For A=10 the agreement between the ex-
vanishing fluctuations in the intensities, one h&§X=0.  perimental and the theoretical curve is quite good. This dem-
Since the parameter is generated through the statistical gnstrates, for transmission and reflection measurements, how
moments of they,,, both the normalization and the correla- the correlation hole can be observed by superimposing inde-

tion hole its_elf approach the theoreti(_:al_ prediction only as th’fbendent spectra that individually do not show a significant
number of included open channels is increased. correlation hole.

Remarkably, a superposition of reflection spectra even for
the small number of onlyA =3 open channels allows, in
principle, a reobservation of the correlation hole since we
havea = 3/5. For the superimposed transmission spectra with
a=1/5, the hole is still weak. This explains why the hole In the present work on the correlation-hole method, we
could not be observed in the superposition of the originahave evaluated the decay functigfC(t)|?) of stick spectra
transmission spectra of the hyperbola in Fig. 8. Unfortu-as well as that of original and idealized raw spectra for vari-
nately, the favorable behavior of the reflection measurementsus two- and three-dimensional billiard systems. The stick
cannot be exploited because of the experimental artifact disspectra lead to the correlation hole as expected from random
cussed in Sec. IVC 1. matrix theory. The nongeneric features implied by the pres-

In order to demonstrate the influence of the numhesf  ence of bouncing ball orbits in certain billiards did not affect
open channels on the correlation hole and on the normalizahe correlation hole in any observable way.
tion, we have finally calculated several superpositions of The fluctuations of the resonance intensities that are
synthetic spectra for the hyperbola. We used the experimempresent in the raw spectra have a strong impact on the results.
tal spectrum of the positions, and up toA =10 numerically ~ They decrease the visibility of the correlation hole. At the
simulated spectra of Porter-Thomas distributed partial widthsame time, they introduce fluctuations such that, even with
I', with (I ,c)=1. Thus, in contrast to the idealized raw approximately 1000 resonances in the spectrum, the decay
spectra of the Sec. IV C 2, where the amplitudes were takefunction(|C(t)|2) may fall quite far from its expected shape.
from the measurement, the synthetic spectra contain numerFhis again precludes the observation of the correlation hole.
cally generated amplitudes. Figure 10 displays the results fdt is, however, restored if sufficiently many spectra with sta-
A=2, 3,5, and 10. Since we treated the spectra as measuréstically independent intensities are superimposed.

k=(2k—1)11TX, (25)

V. CONCLUSION
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